Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Indian J Med Res ; 159(1): 78-90, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38345040

ABSTRACT

BACKGROUND OBJECTIVES: Discovery of new antibiotics is the need of the hour to treat infectious diseases. An ever-increasing repertoire of multidrug-resistant pathogens poses an imminent threat to human lives across the globe. However, the low success rate of the existing approaches and technologies for antibiotic discovery remains a major bottleneck. In silico methods like machine learning (ML) deem more promising to meet the above challenges compared with the conventional experimental approaches. The goal of this study was to create ML models that may be used to successfully predict new antimicrobial compounds. METHODS: In this article, we employed eight different ML algorithms namely, extreme gradient boosting, random forest, gradient boosting classifier, deep neural network, support vector machine, multilayer perceptron, decision tree, and logistic regression. These models were trained using a dataset comprising 312 antibiotic drugs and a negative set of 936 non-antibiotic drugs in a five-fold cross validation approach. RESULTS: The top four ML classifiers (extreme gradient boosting, random forest, gradient boosting classifier and deep neural network) were able to achieve an accuracy of 80 per cent and above during the evaluation of testing and blind datasets. INTERPRETATION CONCLUSIONS: We aggregated the top performing four models through a soft-voting technique to develop an ensemble-based ML method and incorporated it into a freely accessible online prediction server named ABDpred ( http://clinicalmedicinessd.com.in/abdpred/ ).


Subject(s)
Algorithms , Anti-Infective Agents , Humans , Machine Learning , Supervised Machine Learning , Anti-Bacterial Agents/therapeutic use
2.
PLoS Negl Trop Dis ; 17(10): e0011693, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37871037

ABSTRACT

Trichomonas vaginalis is a human infective parasite responsible for trichomoniasis-the most common, non-viral, sexually transmitted infection worldwide. T. vaginalis resides exclusively in the urogenital tract of both men and women. In women, T. vaginalis has been found colonizing the cervix and vaginal tract while in men it has been identified in the upper and lower urogenital tract and in secreted fluids such as semen, urethral discharge, urine, and prostatic fluid. Despite the over 270 million cases of trichomoniasis annually worldwide, T. vaginalis continues to be a highly neglected organism and thus poorly studied. Here we have developed a male mouse model for studying T. vaginalis pathogenesis in vivo by delivering parasites into the murine urogenital tract (MUT) via transurethral catheterization. Parasite burden was assessed ex-vivo using a nanoluciferase-based gene expression assay which allowed quantification of parasites pre- and post-inoculation. Using this model and read-out approach, we show that T. vaginalis can be found within MUT tissue up to 72 hrs post-inoculation. Furthermore, we also demonstrate that parasites that exhibit increased parasite adherence in vitro also have higher parasite burden in mice in vivo. These data provide evidence that parasite adherence to host cells aids in parasite persistence in vivo and molecular determinants found to correlate with host cell adherence in vitro are applicable to infection in vivo. Finally, we show that co-inoculation of T. vaginalis extracellular vesicles (TvEVs) and parasites results in higher parasite burden in vivo. These findings confirm our previous in vitro-based predictions that TvEVs assist the parasite in colonizing the host. The establishment of this pathogenesis model for T. vaginalis sets the stage for identifying and examining parasite factors that contribute to and influence infection outcomes.


Subject(s)
Extracellular Vesicles , Parasites , Trichomonas Infections , Trichomonas vaginalis , Male , Humans , Female , Animals , Mice , Trichomonas vaginalis/genetics , Trichomonas vaginalis/metabolism , Trichomonas Infections/parasitology , Vagina
3.
PLoS Negl Trop Dis ; 17(10): e0011652, 2023 10.
Article in English | MEDLINE | ID: mdl-37824592

ABSTRACT

INTRODUCTION: Screening for G6PD deficiency can inform disease management including malaria. Treatment with the antimalarial drugs primaquine and tafenoquine can be guided by point-of-care testing for G6PD deficiency. METHODS AND FINDINGS: Data from similar clinical studies evaluating the performance of the STANDARD G6PD Test (SD Biosensor, South Korea) conducted in Bangladesh, Brazil, Ethiopia, India, Thailand, the United Kingdom, and the United States were pooled. Test performance was assessed in a retrospective analysis on capillary and venous specimens. All study sites used spectrophotometry for reference G6PD testing, and either the HemoCue or complete blood count for reference hemoglobin measurement. The sensitivity of the STANDARD G6PD Test using the manufacturer thresholds for G6PD deficient and intermediate cases in capillary specimens from 4212 study participants was 100% (95% Confidence Interval (CI): 97.5%-100%) for G6PD deficient cases with <30% activity and 77% (95% CI 66.8%-85.4%) for females with intermediate activity between 30%-70%. Specificity was 98.1% (95% CI 97.6%-98.5%) and 92.8% (95% CI 91.6%-93.9%) for G6PD deficient individuals and intermediate females, respectively. Out of 20 G6PD intermediate females with false normal results, 12 had activity levels >60% on the reference assay. The negative predictive value for females with G6PD activity >60% was 99.6% (95% CI 99.1%-99.8%) on capillary specimens. Sensitivity among 396 P. vivax malaria cases was 100% (69.2%-100.0%) for both deficient and intermediate cases. Across the full dataset, 37% of those classified as G6PD deficient or intermediate resulted from true normal cases. Despite this, over 95% of cases would receive correct treatment with primaquine, over 87% of cases would receive correct treatment with tafenoquine, and no true G6PD deficient cases would be treated inappropriately based on the result of the STANDARD G6PD Test. CONCLUSIONS: The STANDARD G6PD Test enables safe access to drugs which are contraindicated for individuals with G6PD deficiency. Operational considerations will inform test uptake in specific settings.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Malaria, Vivax , Female , Humans , Primaquine/therapeutic use , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Retrospective Studies , Antimalarials/therapeutic use , Malaria, Vivax/diagnosis , Malaria, Vivax/drug therapy , Malaria, Vivax/prevention & control
4.
Anal Bioanal Chem ; 412(11): 2565-2577, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32055906

ABSTRACT

In the present work, biophysical insight into the binding interactions of the protein, hen egg white (HEW) lysozyme (Lyz) with an anticancer drug, 6-mercaptopurine (6-MP)' was investigated by using a combination of spectroscopic and computational tools. 6-MP, a synthetic analog of natural purines, is a well-known anticancer drug and antiviral agent that inhibits the synthesis of RNA, DNA, and proteins. Lysozyme is a single-chain protein that can combine with endogenous and exogenous substances to exert its antiviral, antibacterial, and antitumor effects. The intrinsic fluorescence of lysozyme was quenched with the increased addition of 6-MP. The quenching mechanism was found to be static in nature as shown by the fluorescence lifetime and excitation spectrum measurements. The conformational changes of Lyz in the presence of 6-MP were monitored both at the ensemble and single-molecule level by using synchronous fluorescence spectroscopy, circular dichroism (CD), and fluorescence correlation spectroscopy (FCS). Molecular docking results predicted the probable binding sites for 6-MP on Lyz. The experimental findings are in good agreement with the results obtained by the molecular dynamics (MD) simulation study. Graphical abstract.


Subject(s)
Antimetabolites, Antineoplastic/metabolism , Mercaptopurine/metabolism , Muramidase/metabolism , Animals , Chickens , Circular Dichroism , Molecular Docking Simulation , Molecular Dynamics Simulation , Muramidase/chemistry , Protein Binding , Protein Conformation/drug effects , Spectrometry, Fluorescence
5.
Front Microbiol ; 10: 2913, 2019.
Article in English | MEDLINE | ID: mdl-31921080

ABSTRACT

Urinary tract infection is primarily caused by Escherichia coli. Multidrug resistance and their rapid dissemination in this pathogenic microbe complicate therapeutic strategies and threaten public health. Conjugation systems responsible for interbacterial transmission of antibiotic resistance are plasmid-encoded and can be classified as the P, F, and I types. Specific pili types and pili associated proteins were related to the transfer among this gram-negative organism and were thought to depend on contacts created by these structures at the time of DNA transport. In this study, conjugation system types of the plasmids that harbor multidrug resistant genes (aac-1b-cr, oqxAB, qnrB, qnrS, bla TEM, bla OXA) amongst 19 E. coli uropathogenic isolates were characterized under ciprofloxacin/ceftazidime selection individually by pili and pili associated gene types. Investigations indicated incidence of single plasmid of multiple replicon type amongst the transconjugants. bla TEM, bla CTX-M, bla OXA, aac-1b-cr, oqxAB, qnrB, qnrS genes in varied combination were observed to be successfully co-transmitted against ceftazidme/ciprofloxacin selection. Seven primer pair sets were selected that encodes pili and pili associated genes (traF, trwJ, traE, trhE, traG, pilM, pilx4) by nucleotide database search tools using annotated plasmids of different incompatibility types to assign the conjugation system type of the transmissible resistant plasmids by PCR. traF was predominant irrespective of drug selection that indicated F-type conjugation system was responsible for transmission of resistant plasmids which results in the rapid dissemination of antibiotic resistance in the isolates screened. Therefore this is a first report of its kind that investigated pili and pili associated genes to bio-type multidrug resistant plasmids and their transmission in clinical settings amongst uropathogenic E. coli circulated in the eastern part of India.

6.
J Clin Diagn Res ; 7(3): 449-53, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23634394

ABSTRACT

BACKGROUND AND OBJECTIVE: Urinary Tract Infections (UTIs) are mostly caused by Escherichia coli. The appropriate therapy demands a current knowledge on the antimicrobial susceptibility pattern amongst these pathogens, as an inappropriate use of antibiotics may lead to complications and treatment failure. The UTIs which are caused by multidrug resistant Extended-Spectrum Beta-Lactamase (ESBL) producing bacteria further pose a severe problem, as the treatment options are limited. The aim of this study was to identify the pattern of multi drug resistance amongst the uropathogenic E. coli (UPEC) isolates which were obtained from hospitalized patients. MATERIALS AND METHODS: Forty UPEC were isolated from 200 urine samples of hospitalized patients who were clinically suspected for UTIs. Antimicrobial susceptibility screening was performed by using 16 antibiotics, by the Kirby Bauer disk diffusion technique. The isolates which were resistant to the third generation cephalosporins were subjected to the ESBL confirmatory test by using drug and drug-inhibitor combination disks by following the CLSI guidelines. RESULTS: All the 40 isolates except three were multidrug resistant. They showed the highest sensitivities for nitrofurantoin (72.5%) and amikacin (70%). A high level of resistance was observed against ampicillin (97.5%), nalidixic acid and cefelexin (95%), amoxicillin (92.5%), cotrimoxazole (82.5%) and ciprofloxacin (80%) respectively. Thirty different antibiotic resistance patterns were observed against the different antibiotics. Twenty-eight out of the 40 isolates were resistant to the third generation cephalosporins. However, the phenotypic test for the ESBL confirmation indicated that eighteen out of the twenty-eight isolates were ESBL producers and that eleven different drug resistance patterns were observed amongst them. CONCLUSIONS: Therefore, this study accounts for the varied multidrug resistance pattern amongst the uropathogenic E. coli which were isolated from hospitalized patients in Kolkata, an eastern region of India. Nitrofurantoin and amikacin should be assigned as potent drugs to treat this infection in this region of the country. These varied resistance patterns present major therapeutic and infection control challenges and they suggest a heterogeneous population of the uropathogenic E. coli isolates which circulate in this sector of India.

7.
J Clin Diagn Res ; 7(12): 2727-31, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24551624

ABSTRACT

BACKGROUND AND OBJECTIVE: A proficient pathogen should be virulent, resistant to antibiotics, and epidemic. However, the interplay between resistance and virulence is poorly understood. Perhaps, the most commonly accepted view is that resistance to quinolones is linked to a loss of virulence factors. However, the low virulent phylogenetic groups may be more prone to acquire resistance to quinolones. The aim of this study was to identify and characterise the Nalidixic Acid (NA) and ciprofloxacin (CIP) resistant uropathogenic Escherichia coli (UPEC) isolates with respect to virulence and phylogenetic background, from hospital settings in Kolkata, an eastern region in India. Research based on these bacterial populations will help in understanding the molecular mechanisms underlying the association between resistance and virulence, that in turn, may help in managing the future disseminations of UTIs in their entirety. MATERIAL AND METHODS: One hundred and ten E. coli isolates were screened against NA and CIP using Kirby-Bauer disk diffusion technique, following CLSI guidelines. Prevalence of virulent factor genes and distribution of phylogenetic groups amongst the isolates was determined by PCR, using gene specific primers against the different virulent factors and DNA markers (chuA, yjaA and DNA fragment, TSPE4.C2) respectively. Statistical analysis of the data was performed using SPSS software. RESULTS: Resistance to both NA and CIP was reported in 75.5 % of the isolates which were analysed. The virulent determinants, papC, pap GII, papEF, afa, cnf1, hlyA and iroN were significantly predominant in the drug susceptible than the resistant isolates. A significant reduction of phylogroup B2 in NA (85.7% versus 64.6%, χ(2)P<0.001) and CIP (85.2 % versus 61.4%, χ(2)P<0.001) resistant UPEC isolates, followed by increase in predominance of non-B2 phylotypes (group D and group B1), were observed. CONCLUSION: This is the first report from India that has indicated possible evidence on horizontal gene transfer from pathogenic to commensal strains and selection of the latter, on extensive usage of this group of antimicrobials in hospital settings, where these drugs were routinely prescribed for treating urinary tract infection. Therefore, this information necessitates surveillance programs and administration of effective strategies, to put an end to random prescription policies involving this group of antimicrobials.

SELECTION OF CITATIONS
SEARCH DETAIL
...